MEDICIENCIAS UTA Revista Universitaria con proyección científica, académica y social
41
Carrera de Medicina. Facultad de Ciencias de la Salud. UTA
De la Torre H, Zurita A. Revisión bibliográfica: Función e importancia de las ADN polimerasas.
MEDICIENCIAS UTA.2022;6 (3):37-42.
3. Wisdom AJ, Kirsch DG. Dissecting the
functional significance of DNA polymerase
mutations in cancer. Cancer Research.
2020;80(24):5459–61.
4. Zhang Y, Davis L, Maizels N. Pathways
and signatures of mutagenesis at targeted DNA
nicks. PLoS Genetics. 2021 Apr 15;17(4).
5. Chatterjee N, Walker GC. Mechanisms of
DNA damage, repair, and mutagenesis.
Environmental and Molecular Mutagenesis
[Internet]. 2017 Jun;58(5):235–63. Available from:
https://onlinelibrary.wiley.com/doi/10.1002/em.22
087
6. Ler AAL, Carty MP. DNA Damage
Tolerance Pathways in Human Cells: A Potential
Therapeutic Target. Frontiers in Oncology.
2022;11(February):1–17.
7. Feng W, Simpson DA, Carvajal-Garcia J,
Price BA, Kumar RJ, Mose LE, et al. Genetic
determinants of cellular addiction to DNA
polymerase theta. Nature Communications. 2019
Dec 1;10(1).
8. Schaub JM, Soniat MM, Finkelstein IJ.
Polymerase theta-helicase promotes end joining by
stripping single-stranded DNA-binding proteins
and bridging DNA ends. Nucleic Acids Research.
2022 Apr 22;50(7):3911–21.
9. Bulock CR, Xing X, Shcherbakova P v.
DNA polymerase δ proofreads errors made by
DNA polymerase e. Proc Natl Acad Sci U S A.
2020;117(11):6035–41.
10. Zheng F, Georgescu RE, Li H, O’Donnell
ME. Structure of eukaryotic DNA polymerase δ
bound to the PCNA clamp while encircling DNA.
Proc Natl Acad Sci U S A. 2020;117(48):30344–
53.
11. Wang Q, Zhang S, Xu Q, Liang J, Zhang
P, Huang W, et al. The Mechanism and Prognostic
Value of DNA Polymerase δ Subunits in
Hepatocellular Carcinoma: Implications for
Precision Therapy. International Journal of General
Medicine. 2022;Volume 15(January):1365–80.
12. Donnianni RA, Zhou ZX, Lujan SA, Al-
Zain A, Garcia V, Glancy E, et al. DNA
Polymerase Delta Synthesizes Both Strands during
Break-Induced Replication. Molecular Cell
[Internet]. 2019;76(3):371-381.e4. Available from:
https://doi.org/10.1016/j.molcel.2019.07.033
13. Ghosh D, Raghavan SC. 20 years of DNA
Polymerase μ, the polymerase that still surprises.
Vol. 288, FEBS Journal. John Wiley and Sons Inc;
2021. p. 7230–42.
14. Ray S, Breuer G, DeVeaux M, Zelterman
D, Bindra R, Sweasy JB. DNA polymerase beta
participates in DNA end-joining. Nucleic Acids
Research. 2018;46(1):242–55.
15. Beard WA. DNA polymerase β: Closing
the gap between structure and function. DNA
Repair [Internet]. 2020;93:102910. Available
from:
https://doi.org/10.1016/j.dnarep.2020.102910
16. Henrikus SS, Wood EA, McDonald JP,
Cox MM, Woodgate R, Goodman MF, et al. DNA
polymerase IV primarily operates outside of DNA
replication forks in Escherichia coli. PLoS
Genetics. 2018;14(1):1–29.
17. Howard MJ, Cavanaugh NA, Batra VK,
Shock DD, Beard WA, Wilson SH. DNA
polymerase β nucleotide-stabilized template
misalignment fidelity depends on local sequence
context. Journal of Biological Chemistry [Internet].
2020;295(2):529–38. Available from:
http://dx.doi.org/10.1074/jbc.RA119.010594
18. Jain R, Rice WJ, Malik R, Johnson RE,
Prakash L, Prakash S, et al. Cryo-EM structure and
dynamics of eukaryotic DNA polymerase δ
holoenzyme. Nature Structural and Molecular
Biology [Internet]. 2019;26(10):955–62. Available
from: http://dx.doi.org/10.1038/s41594-019-0305-
z
19. Vaisman A, Woodgate R. Ribonucleotide
discrimination by translesion synthesis DNA
polymerases. Critical Reviews in Biochemistry and
Molecular Biology [Internet]. 2018 Jul
4;53(4):382–402. Available from:
file:///C:/Users/Carla%0ACarolina/Desktop/Artig
os%0Apara%0Aacrescentar%0Ana%0Aqualificaç
ão/The%0Aimpact%0Aof%0Abirth%0Aweight%
0Aon%0Acardiovascular%0Adisease%0Arisk%0
Ain
20. Chen XS, Pomerantz RT. Dna polymerase
θ: A cancer drug target with reverse transcriptase
activity. Genes (Basel). 2021;12(8).
21. Carvajal-Garcia J, Cho JE, Carvajal-
Garcia P, Feng W, Wood RD, Sekelsky J, et al.
Mechanistic basis for microhomology
identification and genome scarring by polymerase
theta. Proceedings of the National Academy of
Sciences [Internet]. 2020 Apr 14;117(15):8476–85.
Available from:
https://pnas.org/doi/full/10.1073/pnas.1921791117