MEDICIENCIAS UTA Revista Universitaria con proyección científica, académica y social
122
Carrera de Medicina. Facultad de Ciencias de la Salud. UTA
Guevara D, Galarza C, Varela L, Galarza C. Identificación de posibles dianas terapéuticas en la enfermedad
de la diabetes mellitus tipo 2 (T2DM) en base a estudios bioinformáticos. MEDICIENCIAS UTA.2023;7
(3):107-122.
pathophysiology of type 2 diabetes mellitus: how
are they interlinked? 2017;118(11):3577-85.
5. Petersen MC, Shulman GIJPr.
Mechanisms of insulin action and insulin
resistance. 2018;98(4):2133-223.
6. Xia XJCtimc. Bioinformatics and drug
discovery. 2017;17(15):1709-26.
7. Kim J, Zhang J, Cha Y, Kolitz S, Funt J,
Escalante Chong R, et al. Advanced bioinformatics
rapidly identifies existing therapeutics for patients
with coronavirus disease-2019 (COVID-19).
2020;18(1):1-9.
8. Franz M, Rodriguez H, Lopes C, Zuberi
K, Montojo J, Bader GD, et al. GeneMANIA
update 2018. 2018;46(W1):W60-W4.
9. Wishart DS, Feunang YD, Guo AC, Lo
EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a
major update to the DrugBank database for 2018.
2018;46(D1):D1074-D82.
10. Finan C, Gaulton A, Kruger FA, Lumbers
RT, Shah T, Engmann J, et al. The druggable
genome and support for target identification and
validation in drug development.
2017;9(383):eaag1166.
11. Goodsell DS, Zardecki C, Di Costanzo L,
Duarte JM, Hudson BP, Persikova I, et al. RCSB
Protein Data Bank: Enabling biomedical research
and drug discovery. 2020;29(1):52-65.
12. Zhou Y, Zhang Y, Lian X, Li F, Wang C,
Zhu F, et al. Therapeutic target database update
2022: facilitating drug discovery with enriched
comparative data of targeted agents.
2022;50(D1):D1398-D407.
13. Radaeva M, Ton A-T, Hsing M, Ban F,
Cherkasov AJDDT. Drugging the ‘undruggable’.
Therapeutic targeting of protein–DNA interactions
with the use of computer-aided drug discovery
methods. 2021;26(11):2660-79.
14. Flannick J, Florez JCJNRG. Type 2
diabetes: genetic data sharing to advance complex
disease research. 2016;17(9):535-49.
15. Abi Hussein H, Geneix C, Petitjean M,
Borrel A, Flatters D, Camproux A-CJDDT. Global
vision of druggability issues: applications and
perspectives. 2017;22(2):404-15.
16. Calahorrano AZ, Fernández EJMU.
Diabetes mellitus tipo 2 en el Ecuador: revisión
epidemiológica. 2018;2(4):3-9.
17. Cirillo E, Kutmon M, Gonzalez
Hernandez M, Hooimeijer T, Adriaens ME, Eijssen
LM, et al. From SNPs to pathways: Biological
interpretation of type 2 diabetes (T2DM) genome
wide association study (GWAS) results.
2018;13(4):e0193515.
18. Doncheva NT, Morris JH, Gorodkin J,
Jensen LJJJopr. Cytoscape StringApp: network
analysis and visualization of proteomics data.
2018;18(2):623-32.
19. Elseginy SAJJoBS, Dynamics. Virtual
screening and structure-based 3D pharmacophore
approach to identify small-molecule inhibitors of
SARS-CoV-2 Mpro. 2021:1-17.
20. Fuchsberger C, Flannick J, Teslovich TM,
Mahajan A, Agarwala V, Gaulton KJ, et al. The
genetic architecture of type 2 diabetes.
2016;536(7614):41-7.
21. Ghemrawi R, Battaglia-Hsu S-F, Arnold
CJC. Endoplasmic reticulum stress in metabolic
disorders. 2018;7(6):63.
22. Gutiérrez-Rodelo C, Roura-Guiberna A,
Olivares-Reyes JAJGMM. Molecular mechanisms
of insulin resistance: An update. 2017;153(2):214-
28.
23. Jin B, Liu R, Hao S, Li Z, Zhu C, Zhou X,
et al. Defining and characterizing the critical
transition state prior to the type 2 diabetes disease.
2017;12(7):e0180937.
24. King A. Animal models of type 1 and type
2 diabetes mellitus. Animal models for the study
of human disease: Elsevier; 2017. p. 245-65.
25. Legeay M, Doncheva NT, Morris JH,
Jensen LJJF. Visualize omics data on networks
with Omics Visualizer, a Cytoscape App. 2020;9.
26. Lohohola PO, Mbala BM, Bambi S-MN,
Mawete DT, Matondo A, Mvondo JGMJIJoTD, et
al. In Silico ADME/T properties of quinine
derivatives using SwissADME and pkCSM
webservers. 2021;42(11):1-12.
27. Prahasti AE, Yuanita T, Rahayu RPJJoID,
Research M. Computer Aided Drug Discovery
Utilization in Conservative Dentistry.
2022;15(2):899-903.
28. Reddy KA, Ashma M, Jyothi V, Jyostna
TSJWJoPS. Molecular Properties Prediction of
Phenothiazine Derivatives by Using Swiss ADME,
PkCSM, Lazar and Protox. 2019:65-71.
29. Tripathi A, Misra KJJC. Molecular
docking: A structure-based drug designing
approach. 2017;5(2):1042-7.
30. Wang X, Song K, Li L, Chen LJCTiMC.
Structure-based drug design strategies and
challenges. 2018;18(12):998-1006