Determination of the Shelf Life of an Extract and Microencapsulated Lycopene Obtained from Agro-Industrial Waste of Tamarillo (Solanum betaceum)
DOI:
https://doi.org/10.31243/aci.v32i1.2752Keywords:
stability study, lycopene extract, microencapsulation, shelf lifeAbstract
Stability studies were conducted to evaluate the shelf life of the lycopene extract and microencapsulated lycopene, following the guidelines established in ICH Topic Q1A (R2), (2003). The main objective was to estimate the product's stability period under the defined storage conditions, ensuring its quality and functionality over time. For the lycopene extract, storage in amber glass bottles was used to protect it from light and reduce its exposure to oxygen. This extract was maintained at controlled temperatures of 2 to 8°C for a period of 15 days. During this time, periodic analyses were carried out to determine the lycopene concentration and evaluate its stability. In the case of microencapsulated lycopene, a different storage system was used, employing high-density polyethylene bags with aluminum. These packaging conditions provide greater protection against moisture, light, and oxygen, which enhances the compound’s stability. This product was stored at a temperature of 20 ± 5°C for a period of 24 months. The shelf life of both products was determined based on the analysis of lycopene concentration over time, allowing for the assessment of compound degradation under specific storage conditions. Additionally, at the end of the study, antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) technique. The results indicated that the lycopene extract had an estimated shelf life of 7 days when stored in amber glass bottles at temperatures of 2 to 8°C. On the other hand, the microencapsulated lycopene showed greater stability, reaching a shelf life of 22 months when stored in high-density polyethylene bags with aluminum
References
Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R. y Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209. https://doi.org/10.1002/jsfa.6706
ICH Topic Q 1 A (R2) Stability Testing of new Drug Substances and Products Step 5 NOTE FOR GUIDANCE ON STABILITY TESTING: STABILITY TESTING OF NEW DRUG SUBSTANCES AND PRODUCTS. (2003). http://www.emea.eu.int
Lozano, M. del C., Córdoba, D. y Córdoba, M. (2012). Manual de tecnología farmacéutica Fotoletra S.A, 1. ELSEVIER.
Martínez, O. LA. (2015). Microencapsulación mediante secado por aspersión de compuestos bioactivos. Rev. Iber. Tecnología Postcosecha, 16(2).
Miranda, P. P., Fernández, D., Coello-Fiallos, D., López, O. D. y Iraizoz, A. (2023). Microencapsulation of lycopene extracted from the agroindustrial waste of the tree tomato (Solanum Betaceum). Bionatura, 8(2). https://doi.org/10.21931/RB/2023.08.02.3
Pazmiño, D. A., Fernández, D., López, O. D. y Iraizoz, A. (2022). Evaluation of different polymer combinations in the microencapsulation of lycopenes from tree tomato (Solanum betaceum) residues. Bionatura, 7(2). https://doi.org/10.21931/RB/2022.07.02.29
Ramón-Valderrama, J. A. y Galeano-García, P. L. (2019). Actividad antioxidante y antimicrobiana de extractos metanólicos de hojas de plantas del género Solanum Antioxidant and antimicrobial activities in leaf methanolic extracts from the plant genus Solanum. Información Tecnológica, 31(5), 33–42. https://doi.org/10.4067/S0718-07642020000500033
Fernández, D., Bautista, S. N., Pazmiño, N. P., López, O. D. y Iraizoz, A. (2024). Evaluación de la estabilidad fisicoquímica de cápsulas de gelatina dura con microencapsulados de licopenos. Alimentos Ciencia e Ingeniería, 31(02), 1–10. https://doi.org/10.31243/aci.v31i02.2555
Shafe, M. O., Gumede, N. M., Nyakudya, T. T. y Chivandi, E. (2024). Lycopene: A Potent Antioxidant with Multiple Health Benefits. Journal of Nutrition and Metabolism, 2024(1), 6252426. https://doi.org/10.1155/2024/6252426
Sorriento, D. (2024). Oxidative Stress and Inflammation in Cancer. Antioxidants, 13(11), 1403. https://doi.org/10.3390/antiox13111403
Strati, I. F. y Oreopoulou, V. (2011). Process optimisation for recovery of carotenoids from tomato waste. Food Chemistry, 129(3), 747–752. https://doi.org/10.1016/J.FOODCHEM.2011.05.015
Tumer, E. y Tulek, Y. (2023). Effects of dehydrofreezing conditions on tomato lycopene and kinetics of lycopene change in dehydrofrozen tomatoes during storage. Journal of Food Process Engineering, 46(2), e14237. https://doi.org/10.1111/JFPE.14237
Urbina, W. R., Fernández, D., López, O. D. y Iraizoz, A. (2020). Obtaining an extract rich in carotenoids with antioxidant capacity on a bank scale from agro-industrial residues of tree tomato (Solanum betaceum). Bionatura, 5(4), 1356–1362. https://doi.org/10.21931/RB/2020.05.04.13
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Danae Fernández Rivero, Orestes Dario López Hernández, Antonio Iraizo Colarte

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
a. Los autores/as conservarán sus derechos de copiar y redistribuir el material, bajo los términos estipulados en la Licencia de reconocimiento, no comercial que permite a terceros compartir la obra bajo las siguientes condiciones:
Atribución: debe dar el crédito apropiado, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial: no puede utilizar el material con fines comerciales.
Sin restricciones adicionales: no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer cualquier cosa que la licencia permita.





