INTESTINAL MICROBIOTA, NUTRITION AND HEALTH

Main Article Content

Hazel Anderson Vásquez
https://orcid.org/0000-0001-8780-4332

Abstract

The intestinal microbiota consists of microorganisms (viruses, archaea, fungi, and protozoa) (1) that inhabit the human intestine, comprising over 100 trillion bacteria with an approximate weight of 1.5 kg (2). These microorganisms are distributed into three main groups based on their functions: pathogenic bacteria in very low quantities controlled by the immune system, beneficial commensal microorganisms, and sensitive pathogens (3).


Moreover, its structure includes more than 200 bacterial strains belonging to three major families: Firmicutes and Actinobacteria, which are Gram-positive bacteria, and Bacteroidetes, which are Gram-negative bacteria (4,5). It has been reported that more than 90% of the bacteria belong to the phyla Firmicutes and Bacteroidetes (2). The Firmicutes phylum includes several genera, with the most frequent being Lactobacillus, Enterococcus, Ruminococcus, and Clostridium. In the Actinobacteria phylum, the most abundant genus is Bifidobacterium (6).


At birth, the intestine is sterile and becomes fully colonized during the first year of life. Factors influencing its composition include the type of delivery and breastfeeding, and later, genetics, diet, and environmental factors, including antibiotic use (4,7). Each person has a unique intestinal microbiota. For instance, in adults, an inadequate diet, antibiotic abuse, or the aging process can promote intestinal dysbiosis, characterized by an alteration in the bacterial population, which can be qualitative (predominance of different species) or quantitative (lower concentration of beneficial bacteria) (4).

Downloads

Download data is not yet available.

Article Details

How to Cite
Vásquez, H. . A. (2024). INTESTINAL MICROBIOTA, NUTRITION AND HEALTH. Enfermería Investiga, 9(1), 1–4. https://doi.org/10.31243/ei.uta.v9i1.2280.2024
Section
Editorial

References

Oberto MG, Defagó MD. Implicancia de la dieta en la composición y variabilidad de la microbiota intestinal: sus efectos en la obesidad y ansiedad Pinelatinoamericana. 2022(2),137-152.Disponibe en: https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38373

Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules. 2023;28(2):619. DOI: doi: 10.3390/molecules28020619.

Peláez J P M, Garate Bryam P O, Aguinsaca K F P. Relación de la microbiota intestinal con enfermedades autoinmunes. Vive Rev. Salud .2023;6(16):142-153. DOI: https://doi.org/10.33996/revistavive.v6i16.213

Farías N M M, Silva B C, Rozowski N J. Microbiota intestinal: Rol en obesidad. Rev. niño. nutr. 2011 junio;

(2): 228-233. DOI: http://dx.doi.org/10.4067/S0717-75182011000200013.

Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023;15(9):2211. DOI: doi: 10.3390/nu15092211.

Rinninella E, Tohumcu E, Raoul P, Fiorani M, Cintoni M, Mele MC, Cammarota G, Gasbarrini A, Ianiro G. The role of diet in shaping human gut microbiota. Best Pract Res Clin Gastroenterol. 2023;62-63:101828. DOI: doi: 10.1016/j.bpg.2023.101828.

Álvarez Calatayud Guillermo, Guarner Francisco, Requena Teresa, Marcos Ascensión. Dieta y microbiota. Impacto en la salud. Nutr. Hosp. [Internet]. 2018; 35( spe6 ): 11-15. DOI: https://dx.doi.org/10.20960/nh.2280.

Tsafack PB, Li C, Tsopmo A. Food Peptides, Gut Microbiota Modulation, and Antihypertensive Effects. Molecules. 2022;27(24):8806. DOI: doi: 10.3390/molecules27248806.

Caserta S, Genovese C, Cicero N, Toscano V, Gangemi S, Allegra A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients. 2023;15(15):3327. DOI: doi: 10.3390/nu15153327.

Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022;10(12):2507. DOI: doi: 10.3390/microorganisms10122507.

Larrosa Mar, Martínez-López Sara, González-Rodríguez Liliana Guadalupe, Loria-Kohen Viviana, Lucas Beatriz de. Interacciones microbiota-dieta: hacia la personalización de la nutrición. Nutr. Hosp. [Internet]. 2022; 39( spe3 ): 39-43. DOI: https://dx.doi.org/10.20960/nh.04309.

Shen Y, Song M, Wu S, Zhao H, Zhang Y. Plant-Based Dietary Fibers and Polysaccharides as Modulators of Gut Microbiota in Intestinal and Lung Inflammation: Current State and Challenges. Nutrients. 2023;15(15):3321. DOI: doi: 10.3390/nu15153321.

Stribling P, Ibrahim F. Dietary fibre definition revisited - The case of low molecular weight carbohydrates. Clin Nutr ESPEN. 2023;55:340-356. DOI: doi: 10.1016/j.clnesp.2023.04.014.

Troncoso Pantoja C. Alimentación, nutrición y microbiota: ¿qué ocurre con las personas mayores?. Un. fac. Ciencia. Medicina. (Asunción) [Internet]. 2021; 54(1): 125-132. DOI: https://doi.org/10.18004/anales/2021.054.01.125

Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients. 2023;15(9):2150. DOI: doi: 10.3390/nu15092150.

McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., Aksenov, A. A., Behsaz, B., Brennan, C., Chen, Y., DeRight Goldasich, L., Dorrestein, P. C., Dunn, R. R., Fahimipour, A. K., Gaffney, J., Gilbert, J.

A., Gogul, G., Green, J. L., Hugenholtz, P., Humphrey, G., Knight, R. (2018). American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems, 3(3), e00031-18. DOI: https://doi.org/10.1128/mSystems.0003118

Farag MA, von Bergen M, Shao P, Güven EÇ. How do Food and drugs interact with gut microbiota? Toward better or worse health outcomes. J Adv Res. 2023;52:1. DOI: doi: 10.1016/j.jare.2023.09.006.

Similar Articles

You may also start an advanced similarity search for this article.