Establecimiento de un consorcio bacteriano nativo degradador de crudo Napo

Contenido principal del artículo

Mario García
Gustavo Rosero
Liliana Cerda-Mejía
Alma Koch Kaiser

Resumen

Oil extraction activities are vulnerable to the occurrence of fortuitous environmental incidents that cause great deterioration of the native flora and fauna due to their exposure to petroleum hydrocarbons. Thus, there is an urgent need to efficiently eliminate the toxic oil components accumulated in the environment. Here, fifteen hydrocarbon-degrading bacterial consortia able to use Napo-crude oil as the only carbon source were isolated from soil samples. Of these, six consortia showed an oil biodegradation efficiency (%BE) that fluctuated between 20.12 to 27.98% after 22 days of incubation. The isolated consortia showed a significantly higher degradation efficiency compared to that of Pseudomonas aeruginosa and Bacillus cereus mixed culture (%BE = 9.37). The native consortium CPF-L5A, established from soil samples exposed for a long time to hydrocarbons, showed the highest crude biodegradation efficiency amongst the isolated consortia. Virtually, this consortium could totally remove the biodegradable fraction of Napo-crude oil in approximately 2.6 months. Therefore, the CPFL5A consortium is an excellent candidate to be used in the ex-situ treatment of oil-contaminated soils through the implementation of a bioaugmentation system.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
García, M., Rosero, G., Cerda-Mejía, L., & Koch Kaiser, A. (2022). Establecimiento de un consorcio bacteriano nativo degradador de crudo Napo. Alimentos Ciencia E Ingeniería, 29(1), 31–39. https://doi.org/10.31243/aci.v29i1.1724
Sección
Artículos

Citas

Ali, N., Dashti, N., Khanafer, M., Al-Awadhi, H., & Radwan, S. (2020). Bioremediation of soils saturated with spilled crude oil. Scientific Reports, 10(1), 1-9.

Anderson, J. (1982). Soil respiration. In R. M. a. D. K. A. Page (Ed.), Methods of soil analysis, part 2. Chemical and microbiological properties (pp. 836-841.). Madison, Wisconsin, USA: American Society of Agronomy.

Aqeel, A., Hussain, Z., Aqeel, Q.-U.-A., Zafar, J., Ehsan, N., & Tariq, M. (2021). Enrichment and Characterization of Hydrocarbon Degrading Bacteria from Various Oil-Contaminated Sites in Pakistan. Geomicrobiology Journal, 38(7), 577-587.

Déizel, E., Paquette, G., Villemur, R., Lépine, F., & Bisaillon, J. (1996). Biosurfactant production by a soil Pseudomonas strain growing on polyciclic aromatic hydrocarbons. Appl. Environ. Microbiol., 62(6), 1908-1912.

Dhaka, A., & Chattopadhyay, P. (2021). A review on physical remediation techniques for treatment of marine oil spills. Journal of Environmental Management, 288, 112428.

Dibble, J., & Bartha, R. (1976). Effect of iron on the biodegradation of petroleum in seawater. Appl. Environ. Microbiol., 31(4), 544-550.

Dibble, J., & Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol., 37(4), 729-739.

EPA, U. S. (1996). Test method for petroleum hydrocsrbons EPA 8015: Nonhalogenated organics using GC/FID. Washington, USA.

Artículos más leídos del mismo autor/a