Formulation of a functional cookie to take advantage of the nutritional properties of lupin flour (Lupinus mutabilis)

Main Article Content

Andrés Salazar Yanalá
Mirari Arancibia
María del Pilar Mora
Gustavo Guerrero
Alex Valencia
Esteban Fuentes

Abstract

The perspective on health and nutrition has changed radically due to the growing awareness of diseases resulting from poor nutrition. In this sense, lupin flour (Lupinus mutabilis) emerges as an interesting alternative as an ingredient for the development of functional foods thanks to its high protein and fibre content. This study formulated a functional cookie with lupin flour, analysing its physicochemical, rheological and textural properties, as well as its acceptability through sensory analysis. The flour revealed a high protein (49.58%) and total dietary fibre (24.40%) content compared to wheat flour. The lupin flour cookie had a protein percentage (26.31%) five times higher than commercial wheat flour cookie. Texture analysis indicated higher hardness and fracturability. Finally, rheological analysis at Mixolab indicated that lupin flour has a dough development (120 Nm) and swelling power (0.50 Nm) comparable to wheat flour. The study suggests that the developed lupin flour cookie could be a possible snack alternative for coeliacs with high protein content and a pleasant level of acceptability for all types of consumers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Salazar Yanalá, A., Arancibia, M., del Pilar Mora, M., Guerrero, G., Valencia, A., & Fuentes, E. (2024). Formulation of a functional cookie to take advantage of the nutritional properties of lupin flour (Lupinus mutabilis). Alimentos Ciencia E Ingeniería, 31(1), 14. https://doi.org/10.31243/aci.v31i1.2460
Section
Artículos de investigación

References

& Paredes, M. (2018). Modificación de las propiedades reológicas y panificables mediante fermentación del almidón de maíz variedad INIAP 122. In Ciencia e Ingeniería.

AOAC 923.03. (2023). Method 923.03: Ash in Foods. Official Methods of Analysis of AOAC International (22nd ed.).

AOAC 925.10. (2023). Method 925.10: Solids (Total) and Moisture in Flour. Official Methods of Analysis of AOAC International (22nd ed.).

AOAC 985.29. (2023). Methods 985.29: Total Dietary Fiber in Foods. Official Methods of Analysis of AOAC International (22nd ed.).

AOAC 992.23. (2023). Method 992.23: Crude protein in cereal grains and oilseeds. Official Methods of Analysis of AOAC International (22nd ed.).

AOAC 2003.06. (2023). Method 2003.06: Crude Fat in Feeds, Cereal Grains, and Forages. Official Methods of Analysis of AOAC International.

Aponte, E., Franco-Crespo, C., & Jacome, A. (2023). Factibilidad del uso de pseudocereales andinos en el desarrollo de barras energéticas. Revista Ciencia UNEMI, 16(43), 1–10.

Aranda Tarazona, J. J., Bocanegra Reyes, G. I., Pantoja-Tirado, L., Prieto Rosales, G. P., Rodriguez-Paucar, G., & Aguirre Vargas, E. (2021). Efecto de la temperatura de extrusión en la mezcla de harinas de tarwi (Lupinus mutabilis) y arroz (Orysa sativa) para la producción de un Snack. TAYACAJA, 4(1), 122–134. https://doi.org/10.46908/tayacaja.v4i1.158

Asalde Montero, N. A., & Iparraguirre Lozano, M. (2023). Determinación de las características nutricionales y sensoriales de galletas fortificadas con cushuro (Nostoc sphaericum vauch) y tarwi (Lupinus mutabilis sweet). Repositorio Institucional - ULCB. Retrieved from http://repositorio.ulcb.edu.pe/xmlui/handle/ULCB/1217

Banu, I., Stoenescu, G., Ionescu, V., & Aprodu, I. (2011). Estimation of the Baking Quality of Wheat Flours Based on Rheological Parameters of the Mixolab Curve. Czech J. Food Sci, 29(1), 35–44.

Berru, L. B., Glorio-Paulet, P., Basso, C., Scarafoni, A., Camarena, F., Hidalgo, A., & Brandolini, A. (2021). Chemical Composition, Tocopherol and Carotenoid Content of Seeds from Different Andean Lupin (Lupinus mutabilis) Ecotypes. Plant Foods for Human Nutrition, 76(1), 98–104. https://doi.org/10.1007/s11130-021-00880-0

Bracamonte Herrera, Á. J. (2023). Caracterización fisicoquímica y reológica de galletas sustituidas parcialmente por harina de tarwi (Lupinus mutabilis) y harina de kañiwa (Chenopodium pallidicaule). Retrieved from http://repositorio.lamolina.edu.pe/handle/20.500.12996/5908

Cabrera Mera, V. J., Benavides Panchana, J. I., Cortez Espinoza, A. C., Aldas Morejon, J. P., & Revilla Escobar, K. Y. (2023). Sustitución parcial de la harina de trigo (Triticun aestivum L.) por harina de chocho (Lupinus mutabilis) en la elaboración de galletas. Revista Colombiana de Investigaciones Agroindustriales, 10(2), 23–33. https://doi.org/10.23850/24220582.5736

Carvajal-Larenas, F. E., Linnemann, A. R., Nout, M. J. R., Koziol, M., & van Boekel, M. A. J. S. (2016, July 3). Lupinus mutabilis: Composition, Uses, Toxicology, and Debittering. Critical Reviews in Food Science and Nutrition, Vol. 56, pp. 1454–1487. Taylor and Francis Inc. https://doi.org/10.1080/10408398.2013.772089

Curti, C., Alcócer, J., Rivas, M., Vinderola, G., & Ramón, A. (2022). Harinas de lupino blanco (Lupinus albus) y andino (L. mutabilis) aptas para consumo: características físico-químicas y funcionales. Retrieved from https://creativecommons.

Deng, Y., Wang, Y., Zhong, G., & Yu, X. (2018). Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy. Infrared Physics and Technology, 93, 124–129. https://doi.org/10.1016/j.infrared.2018.07.027

Food and Agriculture Organization of the United Nations. (2002). Food energy-methods of analysis and conversion factors.

Garrido, F., Jara, K., Wittig De Penna, E., Dondero, M., Mendoza, S., & González, S. (2009). Aceptabilidad de sopas deshidratadas de leguminosas adicionadas de realzadores del sabor (umami). Rev Chil Nutr, 36(4), 1105–1112.

Guan, Z.-W., Yu, E.-Z., & Feng, Q. (2021). Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 26(22), 6802. https://doi.org/10.3390/molecules26226802

Gulisano, A., Alves, S., Martins, J. N., & Trindade, L. M. (2019, October 30). Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. Frontiers in Plant Science, Vol. 10. Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.01385

INEN, N. (2005). Norma Técnica Ecuatoriana NTE INEN 2085:2005. Galletas. Requisitos .

Kukurová, K., Rerková, L., Belovic, M., Perović, L., Torbica, A., & Ciesarová, Z. (2023). The impact of asparaginase on textural properties of wholegrain cereal biscuits enriched with sea buckthorn pomace. Microbiol Biotech Food Sciences, 13(1).

Lin, S., Chi, W., Hu, J., Pan, Q., Zheng, B., & Zeng, S. (2017). Sensory and nutritional properties of chinese olive pomace based high fibre biscuit. Emirates Journal of Food and Agriculture, 29(7), 495–501. https://doi.org/10.9755/ejfa.2016-12-1908

Mostafa, G. M., El-Desouky, A. I., Sharoba, A. M., Mohamed, Z. E.-O. M., & Morsy, M. K. (2022). Physicochemical and Sensory Properties of Biscuit Fortified With Bitter Lupine. Annals Of Agricultural Science, 60(3), 869. Retrieved from https://assjm.journals.ekb.eg

Nikolić, N., Radulović, N., Momcilović, B., Nikolić, G., Lazić, M., & Todorovic, Z. (2008). Fatty acids composition and rheology properties of wheat and wheat and white or brown rice flour mixture. European Food Research and Technology, 227(5), 1543–1548. https://doi.org/10.1007/s00217-008-0877-z

Ríos Albuja, C. A. (2013). Plan de negocios para la industrialización y comercialización de consumo masivo de galletas gourmet en Quito-Ecuador. Retrieved from http://dspace.udla.edu.ec/handle/33000/1547

U.S. Department of Agriculture. (2019). FoodData Central: Cookies, shortbread, commercially prepared, pecan. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/174968/nutrients

U.S. Department of Agriculture. (2020). FoodData Central: Flour, wheat, all-purpose, enriched, bleached. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/789890/nutrients

Villanueva Flores, R. (2017). Productos libres de gluten: un reto para la industria de los alimentos. Ingeniería Industrial, 35, 183–194. Retrieved from http://www.redalyc.org/articulo.oa?id=337453922009

Visioli, F., & Poli, A. (2020). Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients, 12(12), 3782. https://doi.org/10.3390/nu12123782

Similar Articles

You may also start an advanced similarity search for this article.