Immunometabolism and Childhood Malnutrition: Perspectives
Main Article Content
Abstract
Immunometabolism is an emerging field of research focusing on the interrelationship between the immune system and metabolism (1). In the context of childhood malnutrition, this connection is particularly significant, as inadequate nutrition can affect both systems. It is important to consider that nutrients, vitamins, and minerals influence the immune response and the genesis of childhood malnutrition (2,3).
Childhood malnutrition can affect innate immunity, the first line of defense of the body against pathogens. The lack of essential nutrients can decrease the effectiveness of physical and chemical barriers, as well as the capacity of immune cells to recognize and eliminate infectious agents. Immunometabolism also encompasses metabolic processes that influence the inflammatory response. Childhood malnutrition can dysregulate inflammation, leading to inappropriate immune responses and, in some cases, chronic conditions (2-5).
Severe malnutrition in childhood can lead to immunodeficiency, significantly weakening the immune system's ability to combat common infections. This increases the risk of severe diseases and can have long-term consequences for the child's development and health (3-4). Malnutrition can affect the efficacy of vaccines, as a compromised immune system may struggle to generate an adequate immune response. This underscores the importance of addressing malnutrition as part of comprehensive child health strategies (4-6).
In summary, childhood malnutrition, whether due to a deficit of essential nutrients or an excess of empty caloric intake, can compromise immune function, weakening the body's defense mechanisms against infections and diseases. Additionally, malnutrition and immunity are interconnected in a vicious cycle, where a compromised immune response can lead to greater susceptibility to infectious diseases, which in turn can negatively affect the child's nutritional status (5-8).
Childhood is a critical period for the development of the immune system. Malnutrition during this period can have long-term effects on the body's ability to defend itself against pathogens, persisting into adulthood and constituting an etiopathogenic element in autoimmune and chronic inflammatory diseases. Childhood malnutrition can show immediate impacts, such as increased susceptibility to infectious diseases, and in the long term, it can contribute to the development of chronic diseases related to the immune system, such as allergies and autoimmune diseases (7-9).
Various nutrients play a crucial role in both metabolism and immune function. Deficiency of essential vitamins and minerals, including vitamin A, iron, and zinc, can adversely affect the immune response. A significant element is the Intestinal Microbiota, as immunometabolism is also linked to the health of the gut microbiota. Malnutrition can alter the composition of the microbiota, influencing immune response and nutrient metabolism (10-12).
This necessitates nutritional intervention strategies from early ages, focusing on the quantity of calories consumed, the quality, and diversity of the diet. Promoting adequate, balanced, and nutrient-rich diets is essential at this stage of life (11-13). In cases of acute malnutrition, nutritional supplementation programs can be crucial to quickly restore essential nutrients and strengthen the immune system, while also regulating altered metabolic processes (12-15).
The role of nursing in nutritional education and access to nutritious foods is fundamental to preventing childhood malnutrition and its consequences on immunometabolism (15). Addressing childhood malnutrition from an immunometabolism perspective involves a holistic approach that considers both the quality of the diet and the body's ability to efficiently utilize nutrients, aiming to promote the long-term health of children.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Rosa C. Paolicelli, Stefano Angiari. Microglia immunometabolism: From metabolic disorders to single cell metabolism. Seminars in Cell & Developmental Biology. 2019; 94: 129-137. DOI: https://doi.org/10.1016/j.semcdb.2019.03.012.
Otoya Moreno G. La importancia de la microbiota y el inmunometabolismo en el desarrollo de la Enfermedad Inflamatoria Intestinal. IBDR. 2023;2(2): 1-4. Disponible en: http://saber.ucv.ve/ojs/index.php/rev_ibdr/article/view/25772
Mensah, P. Las bases del inmunometabolismo y sus implicaciones en la salud y la enfermedad. Newletter. 2020. Disponible en: https://www.aemi.es/kb/las-bases-del-inmunometabolismo-y-sus-implicaciones-en-la-salud-y-la-enfermedad/
Baquero, I. Inmunometabolismo: interrelación entre el sistema inmune y el metabolismo. Newletter. 2020. Disponible en: https://www.aemi.es/kb/las-bases-del-inmunometabolismo-y-sus-implicaciones-en-la-salud-y-la-enfermedad/
Carrazo Pérez Blanca. ¿Cuáles son las diferencias entre malnutrición y desnutrición?. UNICEF. 2022. Disponible en: https://www.unicef.es/blog/desnutricion/diferencias-malnutricion-desnutricion
Rivera, R. L. Avaliação do metabolismo energético em frangos de corte: metodologia para avaliação e determinação do teor energético dos ingredientes dos alimentos. 2024. Disponible en: https://hdl.handle.net/11449/256016
Díaz-Aragón A, Ruiz-Gastélum E, Álvarez-López H. Conociendo los mecanismos básicos del metabolismo de los lípidos. Cardiovasc Metab Sci. 2021;32(Suppl: 3): s147-152. DOI: https://doi.org/10.35366/100786.
Contreras-Roura J, Martínez-Rey L, Marín-Padrón L, Camayd-Viera I, Concepción-Álvarez A, Acosta-Sánchez T. Recomendaciones para la orientación diagnóstica de los errores innatos del metabolismo de los aminoácidos. Revista Cubana de Genética Comunitaria. 2022; 13 (2) Disponible en: https://revgenetica.sld.cu/index.php/gen/article/view/75
Balsinde, J. Metabolismo y regulación de los plasmalógenos en inmunidad innata e inflamación. Papel de la lipina-2–R. 2024;. The eicosanoid. Rerearch Divisio Valladolid. Disponible en: http://www.balsinde.org/publists/status24.pdf
Viana AG, Costa E de S, Chagas GG, Correia RH, Batista Filha AJA. Influência do Envelhecimento no Metabolismo dos Farmacoterápicos Utilizados em Tratamento da Depressão em IdosoS. Rev. Foco. 2024;17(6):e5299. Disponible en: https://ojs.focopublicacoes.com.br/foco/article/view/5299
Seneda, AL. Identificação de novos microRNAs associados ao metabolismo maligno do câncer de pulmão. 2023. Disponible en: https://repositorio.unesp.br/items/91c17b4a-8474-4476-a286-dcdb72521ca6
García AC, Castro T, Berbara RLL, Tavares OCH, Elias SS, Amaral Sobrinho NMB, Pereira MG, Zonta E. Revisão sobre a relação estrutura-função das substâncias húmicas ea sua regulação do metabolismo oxidativo em plantas. Rev Virtual de Quim; 2019;11(3): 754-770. Disponible en: http://static.sites.sbq.org.br/rvq.sbq.org.br/pdf/v11n3a14.pdf
Maria António Castro, Pedro Fonseca, Fernando Paiotti, Margarida Pocinho, Davide Carvalho, Eduardo Vinha, João Paulo Vilas-Boas. Gait Characteristics in People with Diabetes Classified in Risk Categories 0 and 2 of the IWGDF: International Working Group on the Diabetic Foot. Rev Port Endocrinol Diabetes Metab. 2021;16(3-4). Disponible en: https://cyberleninka.org/article/n/602456.pdf
Valdez, MAM, Pozo-Palacios, J. Interacción de factores genéticos y ambientales en el metabolismo del ácido fólico y la patogénesis de defectos del tubo neural. Revista Brasileña de Revisión de la Salud. 2023;6 (1): 3585–3599. DOI: https://doi.org/10.34119/bjhrv6n1-279
Cambaceres Carlos, Viggiano Victoria, Parellada Camila, Esteguy Florencia, García Sebastián, Castaños Claudio. Disfunciones del metabolismo del surfactante pulmonar: Caso clínico pediátrico. Arch. argent. Pediatr. 2024; 122(3): e202310084. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1554954