Evaluation of the physicochemical stability of hard gelatin capsules containing lycopene microencapsulates

Main Article Content

Danae Fernández Rivero
Shirley Nicole Bautista Gavilanes
Nelly del Pilar Pazmiño Miranda
Orestes Dario López Hernández
Antonio Iraizo Colarte

Abstract

Three batches of hard gelatin capsules containing lycopene microencapsulates were evaluated for their physicochemical stability during storage at a temperature of 20 ± 5°C in amber glass bottles. The tests conducted included lycopene concentration, visual inspection, weight, and disintegration time, with a sampling frequency of 0, 3, 6, 9, and 12 months, according to the ICH Q1A guidelines. Based on the results of lycopene concentration over time, the stability period was determined. The antioxidant activity of the capsules was confirmed at the end of the study using the DPPH method. The capsules maintained their physical integrity, showing no adhesion, cracks, swelling, or color changes. The weight variation remained within the acceptable range of 90 to 110%, and the disintegration time remained under 45 minutes. The stability period varied from 12,53 to 14,24 months in the analyzed batches. The results obtained indicate that the capsules maintain their physical and chemical characteristics for 12 months, meeting the acceptance criteria established for solid oral dosage forms

Downloads

Download data is not yet available.

Article Details

How to Cite
Fernández Rivero, D., Bautista Gavilanes, S. N., Pazmiño Miranda, N. del P., López Hernández, O. D., & Iraizo Colarte, A. (2024). Evaluation of the physicochemical stability of hard gelatin capsules containing lycopene microencapsulates . Alimentos Ciencia E Ingeniería, 31(02), 1–10. https://doi.org/10.31243/aci.v31i02.2555
Section
Artículos de investigación

References

Bobo, G., Davidov, G., Arroqui, C., Vírseda, P., Marín, M. R. y Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209. https://doi.org/10.1002/jsfa.6706

Esmaeili, S., Dayani, L., Taheri, A. y Zolfaghari, B. (2021). Phytochemical standardization, formulation and evaluation of oral hard gelatin capsules from Pinus eldarica bark extract. Revista de Fitomedicina, 11(2), 168–179.

FARMACOPEA DE LOS ESTADOS UNIDOS DE AMERICA. (2019). USP 42. United States Pharmacopeial Convention, Inc. Official from May 1, 2019. NF37, 1.

ICH Topic Q 1 A (R2) Stability Testing of new Drug Substances and Products. NOTE FOR GUIDANCE ON STABILITY TESTING: STABILITY TESTING OF NEW DRUG SUBSTANCES AND PRODUCTS. (2003). http://www.emea.eu.int

Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., …… Sharifi-Rad, J. (2021). Licopeno: fuentes de alimentos, actividades biológicas y beneficios para la salud humana. Medicina oxidativa y longevidad celular. https://doi.org/10.1155/2021/2713511

Lozano, M. C., Córdoba, D. y Córdoba, M. (2012). Manual de tecnología farmacéutica. Barcelona, España: Elsevier.

Esquivel, B. E., Ochoa, L.A. y Rutiaga, O. M. (2015). Microencapsulación mediante secado por aspersión de compuestos bioactivos. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 180-192.

Miranda, P. P., Fernández, D., Coello, D., López, O. D. y Iraizoz, A. (2023). Microencapsulation of lycopene extracted from the agroindustrial waste of the tree tomato (Solanum Betaceum). Bionatura, 8(2). https://doi.org/10.21931/RB/2023.08.02.3

Mudric, J., Arsenijevic, J., Maksimovic, Z., Ibric, S., Gopcevic, K. y Duris, J. (2021). Tablet and capsule formulations incorporating high doses of a dry optimized herbal extract: The case of Satureja kitaibelii. Journal of Drug Delivery Science and Technology, 66, 102776. https://doi.org/10.1016/J.JDDST.2021.102776

Pimentel, J. P., Sueros, F. J., Zegarra, P., Miranda, L. M., Sarmiento, P. y Jiménez, H. G (2023). Microencapsulation of Opuntia Ficus-indica Betacyanin by Lyophilization and Effect on Stability and Antioxidant Activity. Revista Cubana de Farmacia, 56(1), Artículo e847.

Ramón, J. A. y Galeano, P. L. (2019). Antioxidant and antimicrobial activities in leaf methanolic extracts from the plant genus Solanum. Información Tecnológica, 31(5), 33–42. https://doi.org/10.4067/S0718-07642020000500033

Strati, I. F. y Oreopoulou, V. (2011). Process optimization for recovery of carotenoids from tomato waste. Food Chemistry, 129(3), 747–752. https://doi.org/10.1016/j.foodchem.2011.05.015

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.